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also shows that 7 is of the order of 10—% with ¢=0.1.
Since Pr? is proportional to (4;/Ni%)? either increasing
¢ or changing the surface contour f(x), according to (30),
Ay may be increased giving a larger 7. ‘

It is clear from the example that we may achieve the
control of the surface-to-bulk wave conversion process
by carefully designing the region of discontinuity. The
application of this analysis to the tapping of surface
wave in isotropic media remains to be checked by
experiments.
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Elastic Waves Guided by a Solid Layer
Between Adjacent Substrates

Y
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Abstract—The present investigation is motivated by the problem
of coupling Rayleigh waves between adjacent substrates when either
substrate is nonpiezoelectric, in which case it becomes necessary
to resort to some mechanical means to achieve this coupling. The use
of a fluid coupling layer has been investigated and experimentally
demonstrated elsewhere, while the use of a solid layer, with its
inherently greater mechanical stability, has also been proposed. In
this work, the operating characteristics of a specific solid-layer struc-
ture are predicted on the basis of a theoretical analysis, which
furnishes the propagdtion characteristics and field structure of the
waves which may be guided by a solid layer between two identical
solids.

I. INTRODUCTION

HE present investigation is motivated by the
Tproblem of transferring the energy in an acoustic
Rayleigh wave propagating on the surface of a
given substrate to the Rayleigh wave on an adjacent
. substrate. In the absence of any guiding mechanism, the

total time delay available on an acoustic-surface-wave

delay line is limited by the length of the crystal sub-
strate, but such a limitation may be overcome by cou-
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Fig. 1. Coupling of Rayleigh waves between (a) piezoelectric sub-
strates by means of an air gap and (b) nonpiezoelectric substrates
by means of a solid layer.

pling the Rayleigh wave from the surface of one sub-
strate to that of an adjacent substrate, thus lengthening
the total delay path.

When a Rayleigh wave is generated on a piezoelectric
substrate, coupling to the Rayleigh wave on an adjacent
piezoelectric substrate can be effected via the evanes-
cent electric field in the air gap when the two substrates

‘are brought close together [1], as shown in Fig. 1(a). If

the adjacent substrate is not piezoelectric, however, this
method is no longer feasible and an alternative scheme
must be employed. Such a scheme has recently been
proposed and experimentally demonstrated [2], [3],
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the coupling under these conditions being achieved by
inserting a layer of fluid or solid between the two sub-
strates, and the energy transferred via the mechanical
rather than electric field.

A schematic diagram of the physical arrangement
employing a solid layer is shown in Fig. 1(b). Broadly
speaking, the principle of operation of this device is the
same for both fluid and solid coupling layers. Referring
to Fig. 1(b), the configuration may be divided into three
distinct regions, each capable of supporting its own
spectrum of modes or guided waves. The first of these
regions is the original substrate supporting the gener-
ated Rayleigh wave, which of course is the mode of that
free surface. The second region consists of a layered
configuration which is capable of supporting an infinite
number of modes guided along the direction of the inter-
face. And finally, there is the free surface of the second
substrate, onto which elastic energy is to be coupled,
again in the form of its Rayleigh wave mode. The oper-
ation of the device can therefore be understood in terms
of the initial Rayleigh wave being incident on the lay-
ered system and exciting all of the characteristic modes
thereof. Those which are above cutoff are then guided
to the other end of the layered region, and similarly re-

converted into a Rayleigh wave, both on the original

substrate and also on the adjacent substrate.

For a detailed understanding of the coupling behav-
ior, as well as for design purposes, a knowledge of the
dispersion characteristics of the layered configuration
is essential. For the case of a fluid layer, results have
already been obtained and are presented in [3]. The
objective of this investigation is the analysis of the
dispersion characteristics and the modal fields of the
solid-layer configuration.

II. MobpEs oF A SoLiD LAYER
BerweEEN Two SoLIDS

Two kinds of modes can exist in the solid-layer region
of Fig. 1(b), one of the Rayleigh type with particle
velocity in the sagittal plane, and the other of the Love
or SH type with particle velocity perpendicular to the
sagittal plane. Of these two, only the Rayleigh type is
relevant to the coupling of Rayleigh waves between
adjacent substrates since the Love type of mode is
orthogonal in polarization to the Rayleigh wave. For
the sake of completeness, however, the properties of
both mode types will be investigated.

For the purposes of analysis, the layered region in the
structure of Fig. 1(b) is idealized as a solid elastic layer
between two identical half-spaces, as shown in Fig. 2.
For the sake of simplicity and with no loss in generality,
it is assumed that the fields do not vary in v, so that
By =0 and ki =k 1 k2= k..

In solving for the modes of this layered configuration,
it is convenient to employ a microwave network ap-
proach first described in [4], and subsequently elabo-
rated on in more detail in [5]-[7]. In the context of the
present problem, this involves the representation of the
bulk wave constituents which comprise the modal fields
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Fig. 3. Equivalent network for solid-solid interface.

in the substrate and layer regions in terms of transmis-
sion lines, and the representation of the solid—solid inter-
faces in terms of equivalent networks which couple the
aforementioned transmission lines. In addition, it is
convenient to choose the direction of the transmission
lines to coincide with the transverse z direction (perpen-
dicular to the interfaces), in order to obtain a transverse
equivalent network, to which one may then apply the
transverse resonance condition and so obtain the dis-
persion relation for the modes of the configuration.
The virtue of this approach lies in the fact that all of
the elements required, namely, the transmission line
representations for the bulk wave constituents and
the equivalent network for the solid—solid interface,
have been previously derived [6], [7], and it is a trivial
matter to combine these various building-blocks in
the appropriate manner to obtain the transverse
equivalent network for the structure at hand. For
convenience, the parameters of the respective trans-
mission line representations and their associated mode
functions are shown in Table I, and the equivalent net-
work for a solid-solid interface is shown in Fig. 3.
The parameters which describe the properties of an
isotropic elastic medium are the density p, the rigidity
1, and the compressibility A. In terms of these param-
eters, the wavenumbers of plane bulk waves are given

by
e P
k=w4/ ks=w4/— 1
» NI 2n . (1)

where the subscripts p and s denote compressional (P)
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TABLE I

CHARACTERISTIC IMPEDANCES AND MODE

FuncrioNs FOR PLANE BUuLk WAVES
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and shear (S) waves, respectively. The total transverse
(to 2) wavenumber is denoted by

B, = EE T . ®)

In Table I, the modal quantities are listed for the
pressure (P) waves of a fluid and the P, SV, and SH
waves in an isotropic solid. The subscripts f, p, s, and
sh refer, respectively, to fluid, P waves, SV waves, and
SH waves.

For each mode, the table includes the characteristic
impedance Z and the wavenumber k of its transmission
line representation, as well as the mode functions
(1X3 matrices) g and ¢, from which the components
of the particle velocity v and the stress vector zo-3
can be found from the relations

Fo(e) T
7 (r) | = V(z)ge it=rthw (3)
LT..(r) ]

Gz, 9,2 =

and
T Tra(2)7]
Q(xy Y Z) = Tyz(r)
Lo.(r)

where V(2) and I(z) are the modal voltage and current
of the transmission line representation. The three ad-
ditional components of stress T, 74 and T, can
be found from

Il

I(Z) qe— i Gavthyy) (4)

Toa(r) tas
Txy (1') = V(z) tzy e“’j(kg;z-}-lcyy) (5)
Tyy(r) tyy

where ¢, i, and £,, are also given in the table.

With the information contained in Table I and Fig.
3, it is possible to derive the propagation characteristics
and the field structure of modes which can be guided by
the solid-layer structure of Fig. 2.

A. Rayleigh-Type Modes

In order to efficiently couple from a Rayleigh wave
to waves of the layered region and vice versa, the prop-
erties of the solids in Fig. 2 are chosen so that the
shear wave velocity in the layer is less than that in the
half spaces, in which case the modes are bound to and
guided along the layer, but decaying into the half
spaces over most of the frequency range. Although there
has been some earlier work on this configuration [8],
it does not seem to be readily accessible. A more recent
work [9] formulates the more general problem where
the adjacent half-spaces are not identical, but does not
furnish any numerical results.

1) Dispersion Relations: The method of analysis
employed here consists of formulating a transverse
equivalent network for the structure of Fig. 2, and
then applying the familiar transverse resonance tech-
nique. For the Rayleigh type of modes considered in
this section, the modal fields are made up of bulk P
and SV waves which combine together to satisfy the
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Short — circuit bisection

Open — circuit bisection

Fig. 4. Open-circuit and short-circuit bisections of transverse
equivalent network for Rayleigh-type modes of a solid layer
between identical half-spaces. The former corresponds to even
modes and the latter to odd modes.

boundary conditions at the solid—solid interfaces.
Hence, the transverse equivalent network will consist
of two transmission lines, one representing a P wave
and the other a SV wave, in each of the two substrate
regions as well as in the layer region, and the lines of
the layer region are then coupled to those of the sub-
strate regions by a coupling network representing a
solid—solid interface at each interface plane. In view of
the reflection symmetry of the structure about the
midplane z=0, however, the characteristic modes are
either even or odd about the midplane and these then
correspond, respectively, to the free resonances of the
open-circuit and short-circuit bisections of the sym-
metric transverse equivalent network, which bisections
are shown in Fig. 4.

In the above equivalent networks, the condition for
the existence of free resonances corresponds to the
condition for the existence of guided waves on the
physical structure, and this condition is the transverse
resonance condition [10]:

det (Z+2Z) =0 (6)

-
where Z and Z are the impedance matrices seen looking
in opposite directions at any reference plane 7" in the
network. The application of (6) to the two bisected
networks of Fig. 4 then yields the dispersion relations
for the even and odd modes. As shown in the following
derivation, the resonance condition for both bisections
or, equivalently, the dispersion relation for modes of
both symmetries, can be obtained from a single unified
derivation. To this end, choose the reference plane T
to coincide with the plane z=—H in the substrate
region. Let Z(—H) be the impedance matrix looking
into the semi-infinite substrate region. Then

=[] @

->
In order to derive Z(—H), the impedance matrix
seen looking in the other direction at this reference
plane, we note from the transformer coupling network
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that the terminal voltages are related by

Y

I b [ L B Pl B

where )
Zps = §Zp2 tan kpeH (9a)
Zoy = jZs tan ke H (9b)
for the short-circuit bisection and
Zps = — §Zp5 cOt kpeH (10a)
o = — jZq cot ko H (10b)

for the open-circuit bisection. Similarly, the terminal
currents are related by

I a A1
=G ) )
I b dllIy
Combining (11) and (8), one has
[Vm] BE b [Z‘,,2 ,O :| [a ] [Im] (12
Vsl LC d_ 0 ng b d_ 131

from which it follows that

-

f( oy fa b7 |:Zp2 O:H:a ¢
e allo Zodls 4

Ta? s + 022y acly + Wﬂ 13
_aCsz + bdZAs2 C2Zp2 + dzzsz '

Substituting (7) and (13) into (6), one obtains the
desired dispersion relation

(02240 + 0252 + Zp) (s + 23 + Zar)
— (acZp + bdZ5)? = 0 (14)

where Z,, and Z,; are defined for odd and even modes
in (9) and (10), respectively, the various characteristic
impedances Z,; and Z,; for the two regions ¢=1, 2 are
defined in Table I, and the coupling network parameters
a, b, ¢, and d are defined in Fig. 3. Equation (14) is an
implicit equation for the modal wavenumber k. as
a function of the angular frequency w; it applies to odd
modes upon use of (9) and to even modes upon use of
(10).

The type of solutions sought corresponds to fields
which are transversely decaying into the substrates
and hence characterized by imaginary wavenumbers
kp1 and ks for the respective P and SV wave constituents
in the substrates. In the layer, on the other hand, the
fields are generally transversely propagating, but it is
possible for the P wave to become cutoff transversely
(with hyperbolic rather than trigonometric variation in
z) withoutaltering the basic nature of the wave as long
as the SV wave is still transversely propagating, in
the sense that most of the energy is still confined to the
layer region and attenuates into the substrates.

2) Numerical Solution of Dispersion Relations: The
numerical solution of the dispersion relation (14) is
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Fig. 5. Dispersion characteristics of even Rayleigh-type
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Fig. 6. Dispersion characteristics of odd Rayleigh-type
modes in gold layer between fused quartz substrates.

shown in Figs. 5 and 6 for several of the lower modes
of each symmetry, for the case of a gold layer between
two fused quartz substrates. The phase velocity v, and
group velocity v, are normalized to Cy, the shear-wave
velocity in the layer, and these velocities are plotted
as a function of H/\,, where H is half the layer thick-
ness and A, is the wavelength of shear waves in the
layer. The phase and group velocities are related to
the guided-wave wavenumber &, in the standard fashion
) dw

Up = —— Vg

k. Tk,

(15)

The region of real solutions is bounded by Cs and
Cs, the shear-wave velocities in the layer and substrate,
respectively. This region may be subdivided into two
portions separated by C,s, the longitudinal-wave
velocity in the layer. For Cps <9, <Cy, all of the modes
are such that the P and SV wave constituents are
transversely propagating in the layer. For Cs <9, <Cpe,
however, the P wave constituent in the layer is trans-
versely below cutoff, so that the transverse dependence
of the fields is a combination of a trigonometric varia-
tion for the SV wave constituent and a hyperbolic
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variation for the P wave constituent. Throughout the
entire region of real solutions, however, the bulk wave
constituents in the substrate regions are purely evanes-
cent, in the transverse z direction.

In the limit of a vanishingly thin layer (H/A;x—0),
the phase velocity reduces to that of a shear wave in
the substrate, as expected. Similarly, in the limit of an
infinitely thick layer, the phase velocity approaches
that of a shear wave in the layer.

3) Design of Coupling Layer: From the dispersion
curves M, and M; 1 for the lowest even and odd modes,
respectively, one may calculate a coupling length L
required for the optimum transfer of the Rayleigh
wave from one substrate to a second identical substrate
by means of the well-known directional-coupler formula:

(bso — ko)L = (16)

where k.. and k., are the wavenumbers of the lowest
even and odd modes, respectively. The wvalidity of.
(16) is discussed in the Appendix.

Equation (16) may be written in normalized form
as follows:

)\32 Cs2 Cs2 (17)
e

Vo Ve
where v, and 9, are the phase velocities of the lowest
even and odd mode, respectively. From the known
values of v,/Cs and v,/Cs, the normalized coupling
length L/As may be calculated as a function of H/\g,
with the result shown in Fig. 7. The minimum coupling
length is seen to be approximately 2\, for a layer thick-
ness of 0.8\, (recall that H is half the layer thickness),
As2 being the wavelength of shear waves in the layer.
4) The Modal Fields: The transverse equivalent
network is useful not only for the derivation of disper-
sion relations (by means of the transverse resonance
condition) but also for the derivation of the modal
fields. Equations (3)—(5) {furnish the prescription
whereby the field components of a particular wave are
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related to the voltage and current of its transmission
line representation. Since the mode functions g and g
are presumed known, the particle velocity v and normal
stress zy-3 are fully determined by the voltage and
current on the transmission line representation. [Simi-
lar remarks pertain to the field components in (5).]

In view of the fact that the modal fields of the Ray-
leigh type are made up of a combination of the bulk
P and SV waves, it follows that

G = Gy + G, = [V,(2)8, + V.(2)g,]e =
Q= 0,+ Q. = [[(5)g, + L(z)qs]e =

where the mode functions g and g for the P and SV
waves are given in Table I and the voltages and cur-
rents are to be determined from the appropriate equiva-
lent network of Fig. 4, depending on whether the mode
in question is even or odd. In either case, the solution
for the voltages and currents is a straightforward
transmission line problem, the details of which [11]
will be omitted. Upon substituting these solutions for
the voltages and currents together with the mode
functions from Table I into (18) and (19), one obtains
the following expressions for the modal fields. For the

(18)
(19)

even-mode fields in the layer region (]3| <H), one has
Vpe(0) [ &y V(0
Vpy = _ﬁ?ﬁl[__ COS KpaZ — (0 cos Ks2z:l e (20)
v pape L Rss V p2(0)
vy = 0 (21)
. Vp2(0) [sz .
Dag = — —— sin kpe3
* 7 Vs p2 L k2 i
Via(0) ks
() ——sin ngzil e (22)
V:D2(O) Ks2
R kap2 .
szQ = —]Vp2<0) |:—2 SIN KpeZ
ks22
Vis2(0) ks2? — k2
2( ) Ks2 sin K82Z] e—ika (23)
VP2(O) ksZKs2
Tye =0 (24
kxz - K522
Tzz2 = Vp2<0) I:T COS Kp23
V2(0) ks )
— 2 —cos ngz:l e~k (25)
Vp2(0) ks2

The voltage V,2(0) is merely the arbitrary constant
which occurs in every source-free solution, but the
ratio V(0)/V,2(0) is determined by the network of
Fig. 4(b) (or boundary conditions) and is given by the
expression

V42(0) B |:Zplzsl+ (@*Z 2 Zp1) (—jZ s cot KP2H):I
sz (0) (des1+Cde1) ( —ijz cot Kng)

cos kpo H

(26)

COS KgoH
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For the type of mode being considered, where &g
and k, are imaginary while k. and k., are real, the
definition of the characteristic impedances as given in
Table I implies that Z, and Z, are imaginary while
Zg and Z,, are real. The turns ratios a, b, ¢, and d are
all real and the net result is that the ratio V.2(0)/V,2(0)
is real.

In the substrate regions (]zf > H), the fields are ex-
ponentially decaying instead of trigonometric, and
one has for the even-mode fields:

Vg = M[ ke e—lkptl Uzl~H)
Vw1 Lka
— VL((__H_)) e—lxs1| (|z|—H):| e—jkz:c (27)
Vo(—H
Uy1 = 0 (28)
Va1 = _]Vpi_ 0 l: e g wpl (zl—H)
\/ﬂlpl ksl
_ ke Val=H) e—[Ksli(|z|—H>J ek (29)
| Ksll Vpl(—'H)
Tor = — Vo —H) [M ko1l (zl—H)
sl
2 2 _
. l Ksl! + k.z Vsl( H) e_|"81] (IZI_H)j| itz (30)
kol k| Vu(—H)
szl = 0 (31)
kIZ 8 2
Tt = Vor(—H) l:_i"_l"_ll_ e lxptl Uzl —H)
ks12
- e M e—lx.u](lz[—H)] e, (32)
ks Vip(—H)

In this case, the ratio Vu(—H)/V,a(—H) is found
from the network of Fig. 4(b) to be

Va(—H)  o(Zys cot teH) + d(Zsz cot koH)R
Vpl(_H) G(sz cot Kp?H) + b(Zsz cot KSQH)R

(33)

where

R = Zp1Zs1 + (0«2Z31 —I— C2Zp1)<_ij2 cot K:,,QH) (34)
(abZyy + ¢dZ 1) (—7Zss cot ke H)

and an inspection of (33) and (34) shows that the ratio
is real.

The cross-sectional variation of the wvelocity and
stress fields for even modes, as given in (20) through
(34), is shown in Figs. 8 and 9 for the case of a gold
layer between fused quartz substrates, where H/A\ys=
0.5 and A is the shear-wave wavelength in the gold
layer, in which case the P wave constituent in the layer "
is transversely below cutoff (k,» imaginary).

In a similar fashion, the modal fields of odd sym-
metry are described by the following expressions. In
the layer region (|z| <H)
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Is2<0) Ks2

ks
Ve = —jIpz(O) |:— sin Kp22% — —sin ngz] e (35)

Kp2 IpZ(O) kaz
22 = 0 36
. L:0)] 4 O & ] . 237;
Vo = COS Kp2% —— COS Kso% | €77
o L P ke
. k.
Tooz = V2pa Ip2(0) | —2 - COS Kpo%
82
T5(0) keo? — k2
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I::(0) . [Zplzsl + (a2Z,1 4 2Z,y) (§Zpe tan KP2H):|
Ipz(o) (deﬂ + Cdel) (stg tan K82H)
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2T 4)
cos ko H

is a real quantity.
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In the subsirate region (lzl >H)

C o lrptl (al—H)

Vg1 = -—jIpl(—H)[

l Kp1

In(=H) | e—[x,1|<lz|—H>] e (42)
Ipl(—H) ksl
I (43)
01 = Lpi(—H) l:e_l“"”(]z]_m
‘[8_1(—;{{_)_ j’z_ e usil (Izl—H):‘ ekt (44)
In(—H) ka
. kz
Toor = —/mpr Ioi(— H) [2 ;ﬂ e~ notl (lzl—H)
gl
—_— 2 2
Ia(—H) |kl + ks e—iml<\z\~ﬂ>—l e~tat (45)
I, (—H) kor? N
szl = O (46)
— $ 2 + k”Z
Tost = —jVmp1 Ipy(—H) [ml____— gl (l21—H)
I Kp1 Iksl
I.sl<—H) kxl Ksll e_flell([zl_H)J e~jk:wv (47)
Ip1<_H> a1’
where
L(—H) _ Zplo(Z an ) + A tensaDR] -

Ij(—H)  Za|a(Zy tan kpH) + b(Zs tan ko H) R]

is real, the quantity R being defined in (34).

The cross-sectional variation of the velocity and
stress fields is shown in Figs. 10 and 11 for the lowest
odd mode in a gold layer between fused quartz sub-
strates, where H/A2=0.8 and A\, is the shear-wave
wavelength in the gold layer. The P wave in thelayer
is again cut off in this case.

From Figs. 8 to 11 the confinement of the fields to
the layer region and the attendant decay into the sub-
strates are clearly seen. It is also noted that the desig-
nations of even and odd symmetry are based upon the
symmetry of the field components v, and 7..

B. Love-Type Modes

For the Love or SH type of solutions, v, is the only
nonzero component of velocity when k,=0. With
respect to the interfaces between the layer and sub-
strate regions, the modal fields may therefore be viewed
as being made up of SH bulk waves alone.

The transverse equivalent network for the solid—
solid interface with SH waves incident is also shown in
Fig. 3 and this network is combined with the transmis-
sion line representation for a bulk SH wave to obtain
the bisected transverse equivalent networks for Love-
type modes of even and odd symmetry, as shown in
Fig. 12, where the characteristic impedance Z, and
wavenumber kg, of an SH wave are defined in Table I.
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Fig. 12. Bisected transverse equivalent network for Love-type

modes of (a) even and (b) odd symmetry in structure of Fig. 2.

1) Dispersion Relations: For the equivalent net-
works of Fig. 12, the transverse resonance condition
(6) reduces to the simple expression

& ->
Z+72Z=0 (49)

=

where Z are the input impedances seen looking in
opposite directions at any pair of terminals in the net-
work. In the present situation, it is convenient to
choose the terminals at the reference plane 2= —H in
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the layer region, such that

Hap2 Mop2 @Wp1 M wp2
Z(—H) = — Zypy = — =— —=— (50)
H1p1 pp1 Ksn1 g1 Vka? — ki
and
> . tan
Z(—H)=jZ,. { Kkspo
—cot
) tan . odd
=.7 *—_pz { } Vk822—k$2 H ( ) . (5 1)
Vks®— k2 \—cot (even)

Substituting (50) and (51) into (49), one obtains the
dispersion relation for Love-type modes:

[T S —
- '\/ks22 - kx2
s

(odd)

(even)

_(—tan - i
N kx‘"{ } ViR H (52)
cot

Since the solutions sought are those which are trans-
versely propagating in the layer but decaying into the
substrate, it is necessary that ke>k.>ka or, alter-
natively, Cy<9,< Cs. In particular, it is necessary that
VEii—k2=—j\Vki—Fks2 in order to represent a de-
cay into the substrates. Consequently, (52) may be
rewritten in real form as:

f'i \/kzz - k312
K (0dd)

(even)’

- vEr= A M Vi (53)
tan

One notes that the dispersion relation for even Love-
type modes in the structure with layer thickness 2H
is identical to that for an actual Love wave on a single
substrate covered with a layer of thickness H. An in-
spection of the modal fields to be presented below will
also show an identity between these two cases.

Upon identifying the elastic stiffness y4 with the in-
verse of electromagnetic permeability, a one-to-one
correspondence is also found to exist between the Love-
type modes of (53) and the electromagnetic H-mode
surface waves of a dielectric slab of thickness 2H,
where the air region outside the dielectric corresponds
to the substrates in the acoustic case. The horizontally
polarized electric field E, in the electromagnetic case
corresponds to the particle velocity v, in the acoustic
case. Similarly, H, corresponds to Ty, and I, to T..

A numerical solution of (53) for the phase and group
velocities is shown in Figs. 13 and 14. The lowest mode
is an even mode and propagates down to zero frequency,
whereas the lowest odd mode has a finite cutoff fre-
quency.

2) The Modal Fields: Since the Love-type modes are
made up of bulk SH wave constituents only, the repre-
sentations (3) and (4) take the form

G = Vsh(z)gsh(x7 3’)
Q = sh(z)qsh(x, 3’)

(54)
(55)
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where V,;,(2) and I4(2) are the voltage and current on
the appropriate transverse equivalent network of Fig.
12, and the bulk wave mode functions g and qg, are
given in Table I. The solutions for the voltage and cur-
rent are trivial for the simple networks of Fig. 12 and,
combining these with the mode function expressions,
one obtains the following modal fields for the Love-
type waves. For the fields of the even modes, one has:

Vsh2(0)

Uys = COS Kspae a® (56)
p2p2

. Ksh2 i
Topo = 7Vera(0) —— sin xepeze v (57)
52 :

Vsn2(0

1 = o12(0) COS kg H e koml (z—H) g~dkzz (58)
\/#292

Ksh2 .
sin KshZHe—IK"M[ (Izl—H)e—kaiv (59)

szl = jVshZ(O) %

52

where the subscripts 1 and 2 distinguish between sub-
strate and layer, respectively. :
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Similarly, for the odd-mode fields, one has:

ks .
ty2 = —jl2(0) —— $in kypgze—it=" (60)
Ksh2
T e = —Ine(0)A/ paps COS kspozee® (61)
ks )
vy = —jL532(0) —— sin kypeHe—ivonl (sl—gdksz  (62)

Kshe

szl = — Ishz(O) \//.szz [0} Ksthe“lK“’hll (Izi_H)e_jkxz. (63)

In view of the simplicity of these Love-type solutions,
figures for their transverse dependence [11] are omitted.

I1I. CoNcLUSION

The use of a solid layer between two substrates is
proposed as a means of coupling Rayleigh wave energy
from one substrate to the other, especially when piezo-
electricity is absent from one or both of the substrates,
in which case air-gap coupling cannot be used. To aid
in the understanding and design of such a solid-layer
coupler, the characteristic modes of the layered region
have been investigated in detail for the case of two
identical substrates, and a coupling length which yields
optimum transfer of energy from one substrate to the
other is computed for a layer of typical thickness.

APPENDIX

CoNDITION FOR OPTIMUM POWER TRANSFER
BeTweEN Two IDENTICAL SOLIDS

Let a Rayleigh wave of unit amplitude, propagating
on the lower substrate, be incident on the layered region,
as shown in Fig. 1(b). Such a Rayleigh wave on'the
lower substrate may be regarded as a superposition of
two separate pairs of Rayleigh waves. In the first pair,
identical Rayleigh waves are incident on the upper and
lower substrates, while in the second pair, the Rayleigh
wave on the upper substrate is phase-reversed with
respect to that on the lower substrate. Mathematically,
this superposition may be represented by the following

equa(l()ll.
== -I—

where the upper and lower elements in the column vec-
tors represent the amplitudes of the Rayleigh waves on
the upper and lower substrates, respectively. The (1, 1)
excitation is of even symmetry with respect to the mid-
plane of the structure while the (~—1, 1) excitation is
odd. These excitations therefore excite the even and odd
modes of the layered region, respectively. Let the
amplitude of the lowest of each such mode, due to the
excitation given in (A.1), be S, and S,, where the sub-
scripts ¢ and o denote even and odd. Assuming the de-
sign to be such that all higher modes are evanescent,
only the above two modes propagate to the “output”
end of the layer, where their amplitudes become

(A.1)
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Seem# =l and S,e~#0l, [ being the length of the
layer. If S, and S, are the elements of an appropriately
normalized scattering matrix, then the reciprocity of
the structure implies that the scattering matrix is sym-
metrical, so that .S, is also the appropriate scattering
coefficient from the even mode of the layer to the even
distribution of Rayleigh waves on the substrates be-
yond the layer, and similarly for S,. As a result, the
Rayleigh wave fields beyond the “output” of the layer
are represented by the vector

_];Se2e—jkzeL <1) _|_ _]:So2e—jkg;oL <_ 1>
2 1 2 1
= lseze—jkuL |:(1> + So ¢ Gezo—kze) L <_ 1>} . (A2)
2 1 S 1

If the “aperture” field at the cross section containing
the beginning of the layer is approximated by the field
of the incident Rayleigh wave, the scattering coefficients
S, and S, must then be real quantities because these
coefficients are essentially the projection of the real
aperture (Rayleigh wave) field on the modes of the layer,
which are likewise real in their transverse field distri-
bution. In practice, bulk waves are generated at the in-
put and output junctions and these will contribute to
the aperture field, but their effect is probably small.

Within the above approximation, therefore, the
optimum transfer of energy from the lower to upper
substrates is seen from (A.2) to occur when

(kxo - kxe)L = .

The ratio of energy on the upper and lower substrates
is then given by:
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Py |14 82/52]
P |1—-S82/52]

Complete transfer of energy can occur only if S,=S,,
but this will not in general be the case. Nevertheless,
the asymmetry of a single Rayleigh wave propagating
on one substrate is such that neither of the layer modes
is preferentially excited to any significant degree, so
that one would expect S, and S, to be of comparable
magnitude.
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Short Papers

Stripline Triplexer for Use in Narrow-
Bandwidth Multichannel Filters

RALPH KIHLEN

Abstract—Design techniques and equivalent circuits are pre-
sented for constructing a_printed-circuit narrow-bandwidth comple~-
mentary triplexer filter. The techniques and circuits described allow
the construction of contiguous-band multichannel filters using
printed circuits with no shorted stubs.

A unit was designed and constructed to give a three-percent rela-
tive bandwidth for each separate channel. The agreement between
theory and experiment was in the range of measurement accuracy.
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The author is with the Division of Network Theory, Chalmers University of
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INTRODUCTION

The design of a multichannel filter requires a network that will
separate a given frequency band into NV channels with minimum in-
sertion loss and low VSWR at the input port. One way of solving
this problem is to use cascaded-channel-separating units [1]-[3],
i.e., diplexers, with constant input-port impedances. The advantage
of this design is discussed by Matthaei and Cristal [1]. For each
channel to be separated, one diplexer is needed. In order tc reduce
the number of separating units, the author has constructed a tri-
plexer: a unit that separates out two contiguous channels. The total
number of elements in a triplexer is the same as in two corresponding
diplexers. However, the required space for a triplexer is less than
that of two diplexers. The triplexer is a complementary or pseudo-
complementary filter unit with constant input-port impedance and
it can therefore be cascaded, as the diplexer, to obtain a multichannel
filter system of various sizes without any interaction between the
filter channels.



