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also shows that q is of the order of 10–5 with e =0.1.

Since PTB is proportional to (Af/AZ2) 2, either increasing

e or changing the surface contour, according to (30),

Af may be increased giving a larger q.

It is clear from the example that we may achieve the

control of the surface-to-bulk wave conversion process

by carefully designing the region of discontinuity. The

application of this analysis to the tapping of surface

wave in isotropic media remains to be checked by

experiments.
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Elastic Waves Guided by a Solid Layer

Between Adjacent Substrates

ROBERT C. M. LI, MEMBER, IEEE, AND KUO-HSIUNG YEN

Abstract—The present investigation is motivated by the problem

of coupling Rayleigh waves between adjacent substrates when either
substrate is nonpiezoelectric, in which case it becomes necessary
to resort to some mechanical means to achieve this coupliig. The use

of a fluid coupling layer has been investigated and experimentally

demonstrated elsewhere, while the use of a solid layer, with its
inherently greater mechanical stability, has also been proposed. In

this work, the operating characteristics of a specific solid-layer struc-
ture are predicted on the basis of a theoretical analysis, which

fnrnishes the propagation characteristics and field structure of the

waves which may be guided by a solid layer between two identical
solids.

1. INTRODUCTION

T

HE present investigation is motivated by the

problem of transferring the energy in an acoustic

Rayleigh wave propagating on the surface of a

given substrate to the Rayleigh wave on an adj scent

substrate. In the absence of any guiding mechanism, the

total time delay available on an acoustic-surface-wave

delay line is limited by the length of the crystal sub-

strate, but such a limitation may be overcome by cou-
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Fig. 1. Coupling of Rayleigh waves between (a) piezoelectric sub-
strates by means of an air gap and (b) nonpiezoelectric substrates
by means of a solid layer.

pling the Rayleigh wave from the surface of one sub-

strate to that of an adj scent substrate, thus lengthening

the total delay path.

When a Rayleigh wave is generated on ii piezoelectric

substrate, coupling to the Rayleigh wave cm an adjacent

piezoelectric substrate can be effected via the evanes-

cent electric field in the air gap when the two substrates

are brought close together [1], as shown in Fig. 1 (a). If

the adjacent substrate is not piezoelectric, however, this

method is no longer feasible and an alternative scheme

must be employed. Such a scheme has recently been

proposed and experimentally demonstrated [2], [3],
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the coupling under

inserting a layer of

these conditions being achieved by

fluid or solid between the two sub-

strates, and the energy transferred via the mechanical

rather than electric field.

A schematic diagram of the physical arrangement

employing a solid layer is shown in Fig. 1 (b). Broadly

speaking, the principle of operation of this device is the

same for both fluid and solid coupling layers. Referring

to Fig. 1 (b), the configuration may be divided into three

distinct regions, each capable of supporting its own

spectrum of modes or guided waves. The first of these

regions is the original substrate supporting the gener-

ated Rayleigh wave, which of course is the mode of that

free surface. The second region consists of a layered

configuration which is capable of supporting an infinite

number of modes guided along the direction of the inter-

face. And finally, there is the free surface of the second

substrate, onto which elastic energy is to be coupled,

again in the form of its Rayleigh wave mode. The oper-

ation of the device can therefore be understood in terms

of the initial Rayleigh wave being incident on the lay-

ered system and exciting all of the characteristic modes

thereof. Those which are above cutoff are then guided

to the other end of the layered region, and similarly re-

converted into a Rayleigh wave, both on the original

substrate and also on the adj scent substrate.

For a detailed understanding of the coupling behav-

ior, as well as for design purposes, a knowledge of tl-ie

dispersion characteristics of the layered configuration

is essential. For the case of a fluid layer, results have

already been obtained and are presented in [3]. The

objective of this investigation is the analysis of the

dispersion characteristics and the modal fields of the

solid-layer configuration.

II. MODES OF A SOLID LAYER

BETWEEN Two SOLIDS

Two kinds of modes can exist in the solid-layer region

of Fig. 1 (b), one of the Rayleigh type with particle

velocity in the sagittal plane, and the other of the Love

or SH type with particle velocity perpendicular to the

sagittal plane. Of these two, only the Rayleigh type is

relevant to the coupling of Rayleigh waves between

adj scent substrates since the Love type of mode is

orthogonal in polarization to the Rayleigh wave. For

the sake of completeness, however, the properties of

both mode types will be investigated.

For the purposes of analysis, the layered region in the

structure of Fig. 1 (b) is idealized as a solid elastic layer

between two identical half-spaces, as shown in Fig. 2.

For the sake of simplicity and with no loss in generality,

it is assumed that the fields do not vary in y, so that

kU=O and k,= ~kZ’+ku’ =k..

In solving for the modes of this layered configuration,

it is convenient to employ a microwave network ap-

proach first described in [4], and subsequent~y elabo-

rated on in more detail in [5 ]– [7 ]. In the context of the

present problem, this involves the representation of the

bulk wave constituents which comprise the modal fields

Fig. 2. Model for analysis of modes guided by a
solid layer between two substrates.
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Fig. 3. Equivalent network for solid–solid interface.

in the substrate and layer regions in terms of transmis-

sion lines, and the representation of the solid–solid inter-

faces in terms of equivalent networks which couple the

aforementioned transmission lines. In addition, it is

convenient to choose the direction of the transmission

lines to coincide with the transverse z direction (perpen-

dicular to the interfaces), in order to obtain a transverse

equivalent network, to which one may then apply the

transverse resonance condition and so obtain the dis-

persion relation for the modes of the configuration.

The virtue of this approach lies in the fact that all of

the elements required, namely, the transmission line

representations for the bulk wave constituents and

the equivalent network for the solid–solid interface,

have been previously derived [6], [7], and it is a trivial

matter to combine these various building-blocks in

the appropriate manner to obtain the transverse

equivalent network for the structure at hand. For

convenience, the parameters of the respective trans-

mission line representations and their associated mode

functions are shown in Table I, and the equivalent net-

work for a solid–solid interface is shown in Fig. 3.

The parameters which describe the properties of an

isotropic elastic medium are the density p, the rigidity

p, and the compressibility L In terms of these param-

eters, the wavenumbers of plane bulk waves are given

by
—

(1)

where the subscripts p and s denote compressional (P)



1,1 AND YEN : ELASTIC WAVES GUIDED BY A SOLID LAYER 479

TABLE I

CHARACTERISTIC IMPEDANCES AND MODE
FUNCTIONS FOR PLANE BULK WAVES

a) P Wave ina Fluid

.—

b) PWavein a Solid

zp=~ Kp= ~kvg — k?
KP

(
2kz’

t.. = – ++T)
x+2p ,

kck.
t.. =–2— k,2

(

2kv2
tuu = – ++—

A + 2W k.z )

c) SV Wave in a Solid

[-%1 p&(’-+3
g=–J& I q=l”p:(’-%)

l-~1 1

2k, k,

k. k,

tz==2~
,

k.k,
izv=2—

k,k,

d) SH Wave in a Solid

kck,
tx. =2—

k,kt

k,~ _ k,2.
t., = —

k,k,

kzku
t.v=–2—

k,k,

and shear (S) waves, respectively. The total transverse

(to z) wavenumber is denoted by

k, = Vkmt + I?U2. (2)

In Table I, the modal quantities are listed for the

pressure (P) waves of a fluid and the P, S V, and SH

waves in an isotropic solid. The subscripts f, fi, s, and

sh refer, respectively, to fluid, P waves, S V waves, and

SH waves.

For each mode, the table includes the characteristic

impedance Z and the wavenumber K of its transmission

line representation, as well as the mode functions

(1X 3 matrices) g and q, from which the components

of the particle velocity v and the stress vector ZO. 3

can be found from the relations

and

T..(r)

[1Q(2,y,~)=Tuz(r) = 1(z) qe-~(k+kA’) (4)

v,(r)

where V(z) and 1(z) are the modal voltage and current

of the transmission line representation. The three ad-

ditional components of stress T~~, T.U, and TUV can

be found from

Ei!=v(z)kle-’“)
where t.z,t.v,and tugare also given in the table.

With the information contained in Table I and Fig.

3, it is possible to derive the propagation characteristics

and the field structure of modes which can be guided by

the solid-layer structure of Fig. 2.

A. Rayleigh- Type Modes

In order to efficiently couple from a Rayleigh wave

to waves of the layered region and vice versa, the prop-

erties of the solids in Fig. 2 are chosen so that the

shear wave velocity in the layer is less than that in the

half spaces, in which case the modes are bound to and

guided along the layer, but decaying into the half

spaces over most of the frequency range. Although there

has been some earlier work on this configuration [8],

it does not seem to be readily accessible. A more recent

work [9] formulates the more general problem where

the adjacent half-spaces are not identical, but does not

furnish any numerical results.

1) Dispersion Relations: The methc)d of analysis

employed here consists of formulating a transverse

equivalent network for the structure of Fig. 2, and

then applying the familiar transverse resonance tech-

nique. For the Rayleigh type of modes considered in

this section, the modal fields are made up of bulk P

and S V waves which combine together to satisfy the
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Fig.4. Open-circuit and short-~ircuit bisections of transverse
equivalent network for Raylelgh-type modes of a solid layer
between identical half-spaces. The former corresponds to even
modes and the latter to odd modes.

boundary conditions at the solid–solid interfaces.

Hence, the transverse equivalent network will consist

of two transmission lines, one representing a P wave

and the other a S V wave, in each of the two substrate

regions as well as in the layer region, and the lines of

the layer region are then coupled to those of the sub-

strate regions by a coupling network representing a

solid–solid interface at each interface plane. In view of

the reflection symmetry of the structure about the

midplane z = O, however, the characteristic modes are

either even or odd about the midplane and these then

correspond, respectively, to the free resonances of the

open-circuit and short-circuit bisections of the sym-

metric transverse equivalent network, which bisections

are shown in Fig. 4.

In the above equivalent networks, the condition for

the existence of free resonances corresponds to the

condition for the existence of guided waves on the

physical structure, and this condition is the transverse

resonance condition [10 ]:

det(~+~)=O (6)
+

where ~ and Z are the impedance matrices seen looking

in opposite directions at any reference plane T in the

network. The application of (6) to the two bisected

networks of Fig. 4 then yields the dispersion relations

for the even and odd modes. As shown in the following

derivation, the resonance condition for both bisections

or, equivalently, the dispersion relation for modes of

both symmetries, can be obtained from a single unified

derivation. To this end, choose the reference plane T

to coincide with the plane z = —H in the substrate

region. Let Z( –.H) be the impedance matrix looking

into the semi-infinite substrate region. Then

2(-H)‘[%’2 (7)

In order to derive :( –H), the impedance matrix

seen looking in the other direction at this reference

plane, we note from the transformer coupling network

that the terminal voltages are related by

[;:1 ‘[: :1[21 ‘[: 3[227 ‘8)

where

~P2 = jZP2 tan KPzH (9a)

~.z = jZ,2 tan K,2H (9b)

for the short-circuit bisection and

.2?P2= – jzpt cot KP2H (lOa)

2.2 = – jz,2 cot KS2H (lOb)

for the open-circuit bisection. Similarly, the terminal

currents are related by

(11)

Combining (11) and (8), one has

from which it follows that

Substituting (7) and (13) into (6), one obtains the

desired dispersion relation

(a2~Pz + b’~,t + Zpl) (c’~p2 -t- d2~~2 -1- Z~J

– (ac2P2 + bd~,J2 = O (14)

where ~pt and 2.2 are defined for odd and even modes

in (9) and (10), respectively, the various characteristic

impedances Z.; and Z~t for the two regions ~ = 1, 2 are

defined in Table I, and the coupling network parameters

a, b, c, and d are defined in Fig. 3. Equation (14) is an

implicit equation for the modal wavenumber k~ as

a function of the angular frequency u; it applies to odd

modes upon use of (9) and to even modes upon use of

(10).

The type of solutions sought corresponds to fields

which are transversely decaying into the substrates

and hence characterized by imaginary wavenumbers

KP1 and K~l for the respective P and S V wave constituents

in the substrates. In the layer, on the other hand, the

fields are generally transversely propagating, but it is

possible for the P wave to become cutoff transversely

(with hyperbolic rather than trigonometric variation in

z) without altering the basic nature of the wave as long

as the S V wave is still transversely propagating, in

the sense that most of the energy is still confined to the

layer region and attenuates into the substrates.

2) Numerical Solution of Dispersion Relations: The

numerical solution of the dispersion relation (14) is
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Fig. 6. Dispersion characteristics of odd Rayleigh-type
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shown in Figs. 5 and 6 for several of the lower modes

of each symmetry, for the case of a gold layer between

two fused quartz substrates. The phase velocity VP and

group velocity Vg are normalized to C,z, the shear-wave

velocity in the layer, and these velocities are plotted

as a function of H/b, where H is half the layer thick-

ness and hsz is the wavelength of shear waves in the

layer. The phase and group velocities are related to

the guided-wave wavenumber kx in the standard fashion

(15)

The region of real solutions is bounded by CU and

Cl, the shear-wave velocities in the layer and substrate,

respectively. This region may be subdivided into two

portions separated by CP2, the longitudinal-wave

velocity in the layer. For CPZ <VP< C,l, all of the modes

are such that the P and S V wave constituents are

transversely propagating in the layer. For C,z < VP < Cvz,

however, the P wave constituent in the layer is trans-

versely below cutoff, so that the transverse dependence

of the fields is a combination of a trigonometric varia-

tion for the S V wave constituent and a hyperbolic

variation for the P wave constituent. Throughout the

entire region of real solutions, however, the bulk wave

constituents in the substrate regions are purely evanes-

cent, in the transverse z direction.

In the limit of a vanishingly thin layer (H/&z-+0),

the phase velocity reduces to that of a shear wave in

the substrate, as expected. .Similarly, in the limit of an

infinitely thick layer, the phase velocity approaches

that of a shear wave in the layer.

3) Design of Coupling Layer: From the dispersion

curves Ml,l and Mz,l for the lowest even and odd modes,

respectively, one may calculate a coupling length L

required for the optimum transfer of the Rayleigh

wave from one substrate to a second identical substrate

by means of the well-known directional-coupler formula:

(km – k,p,)L = T (16)

where k~~ and k~~ are the wavenumbers of the lowest

even and odd modes, respectively. The validity of ~

(16) is discussed in the Appendix.

Equation (16) may be written in normalized form

as follows:

(17)

where v. and v. are the phase velocities of the lowest

even and odd mode, respectively. From the known

values of v,/c.Z and vO/C.2, the normalized coupling

length L/h.~ may be calculated as a function of lZ/&,

with the result shown in Fig. 7. The minimum coupling

length is seen to be approximately 2&2 folr a kwr thick-
ness of 0.8&2 (recall that H k half the layer thickness),

b being the wavelength of shear waves in the layer.

4) The Modal Fields: The transverse equivalent

network is useful not only for the derivation of disper-

sion relations (by means of the transverse resonance

condition) but also for the derivation of the modal

fields. Equations (3)–(5) furnish the prescription

whereby the field components of a particular wave are
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related to the voltage and current of its transmission

line representation. Since the mode functions g and q

are presumed known, the particle velocity v and normal

stress ZO. ~ are fully determined by the voltage and

current on the transmission line representation. [Simi-

lar remarks pertain to the field components in (5). ]

In view of the fact that the modal fields of the Ray-

Ieigh type are made up of a combination of the bulk

P and S V waves, it follows that

G = GP + G. = [VP(z)gP + V,(z) g,]e–~~C (18)

Q = QP + f!?. = [lP(X) q, + 1,(2) q.]e–~k”’ (19)

where the mode functions g and q for the P and S V

waves are given in Table I and the voltages and cur-

rents are to be determined from the appropriate equiva-

lent network of Fig. 4, depending on whether the mode

in question is even or odd. In either case, the solution

for the voltages and currents is a straightforward

transmission line problem, the details of which [11 J

will be omitted. Upon substituting these solutions for

the voltages and currents together with the mode

functions from Table I into (18) and (19), one obtains

the following expressions for the modal fields. For the

even-mode fields in the layer region ( I z I <IQ, one has

v.,(o) k.

[

v.,(o)
VZ2 = -

4P2P2 xl Cos ‘p” – ?7,2(0) Cos ‘s2’ 1
e-~k$z (20)

VJ2 =0 (21)

VP2(0) KP2 .
VZ2 = —j -

[d P2P2 x: “n ‘“22

V,Z(o) k.
+—

1
— sin K8Z2 e–~~’z (22)

VP JO) ‘s2

v,z(0) KS22 – k.2
+—

v.,(o) ksz’,~ 1
sin KWZ e-~kzx (23)

[

kzz – K,zz
T.22 = Vpz(o) k ,2 COS KDzZ

8.

v.,(o)— 2 ~i .OS K&?Z] e-i’$’. (25)
v.,(o) .

The voltage VP2(0) is merely the arbitrary constant

which occurs in every source-free solution, but the

ratio V,2(()) / VOZ(0) is determined by the network of

Fig. 4(b) (or boundary conditions) and is given by the

expression

v,,(o)

[

Zpl.z,l+ (a2Zsl+c2&) ( ‘jZP2 cot Kp2H)
—— .—

v,,(o) (abz,~+dzp~) ( ‘jzflz COt K@.H) — 1

.::: ;:: . (26)
s

For the type of mode being considered, where K,l

and Kpl are imaginary while K,2 and KP2 are real, the

definition of the characteristic impedances as given in

Table I implies that 2,1 and ZPI are imaginary while

2.2 and ZPZ are real. The turns ratios a, b, c, and d are

all real and the net result is that the ratio V,2(0) / VP2(0)

is real.

In the substrate regions (I z I ~ H), the fields are ex-

ponentially decaying instead of trigonometric, and

one has for the even-mode fields:

V,,(– H)
— 8–I.*11 (lzl–~)

VP1(– H) 1
e-jk@ (27)

Vul = o (28)

-[

–jvd(-’) I‘P’ I ~-IK,,I O.I-IC
V%l =

<PIP1 h -

——

I;: \ %:] ‘-’’’” “’’-H) 1

e-~k$’ (29)

[

2k* ] KPI]
Tzzl = –jVpl(– H) 8–1.211 (IZI–H)

k,l’

_ l’,~\2+k.2 V, I(-H)
8–IK.11(1.1–H)

1
e-~kz’ (30)

k~~\ K.1 I VP1(– H)

TZU, = O (31)

[

kZ’ + I K.1 !2 8-[XP,I(IZI-H)

T..l = VP1(– H)
k,l’

_ 2& V,,(– H)

k,l Vpl(– H) 1
e-l’s’] ‘l’l-H) e-’z’x. (32)

In this case, the ratio V.1( –H)/ Vvl( –H) is found

from the network of Fig. 4(b) to be

V, I(– H) C(ZPZ COt Kp2@ + ~(z~2 COt K,2H)~

V*,(– H) =
(33)

a(zpz COt KPzH) + b(z.z COt Ks2@~

where

ZPIZ,I i- (a’.Z,l i- C2Z,I) ( –j2p2 cot KP2@

R=–
(abZ,l + cdZP1) (–jZ,l cot K,2H)

(34)

and an inspection of (33) and (34) shows that the ratio

is real.

The cross-sectional variation of the velocity and

stress fields for even modes, as given in (20) through

(34), is shown in Figs. 8 and 9 for the case of a gold

layer between fused quartz substrates, where H/&2 =

0.5 and A,z is the shear-wave wavelength in the gold

layer, in which case the P wave constituent in the layer

is transversely below cutoff (KPZ imaginary).

In a similar fashion, the modal fields of odd sym-

metry are described by the following expressions. In

the laye? region (I z I <H)
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where

l,l(–H) & [C(Z,2 tan Kp2@ + d(z.2 tan Ks2@ ~]

IP,(–H) = Z$l[a(ZP2 tan K@H) + b(z.z tan K,2@ 7

(45)

(46)

(47)

(48)

Fig. 9. Stress distribution for lowest even mode of Rayleigh type.
is real, the quantity R being defined in (34).

The cross-sectional variation of the velocity and

[

km 1A(O) K82

VZ2 1 stress fields is shown in Figs. 10 and 11 for the lowest
= —j1P2(0) — sin Kp2z — — — Sin K,2Z e-~k’x (3$ odd mode in a gold layer between fused quartz sub-

KP2 IPZ(0) k,z
strates, where H/A,z =0.8 and A.2 is the shear-wave

VY2 = o (36)

1

1,2(0) k,

1
wavelength in the gold layer. The P wave in the layer

VZz = ~Pz(0) COS Kp2z + — ‘– COS K.2Z e–ik%x (37) is again cut off in this case.
lP,(0) k,z

From Figs. 8 to 11 the confinement of the fields to

[
T.., = d/J2P2 1.2(0) – z ;; CCE K.2Z

the layer region and the attendant decay into the sub-

strates are clearly seen. It is also noted that the desig-
8

1,2(0) K.22 – kz2
nations of even and odd symmetry are based upon the

+ —.

1
cos K.2Z e-~ks’ (38) symmetry of the field components V= and T?..

IPZ(0) k,2,2

T.uz = O (39) B. Love-Type Modes

[

k.z – K.22

T,,2 = –jti~zpz 1,2(0) sin Kp2z
For the Love or SH type of solutions, VU is the only

k%2 S2 nonzero component of velocity when ku = O. With

1,2(0) K,zkz

1
respect to the interfaces between the layer and sub-

–2—— sin K82z e–ik’z (40) strate regions, the modal fields may therefore be viewed
1P2(0) k,2,2

as being made up of SH bulk waves alone.

where The transverse equivalent network for the solid–

1.,(0)

[

Z,1Z81 + (a2Z.1 + C2ZP1) (jZp2 tan KF2H)

1
solid interface with SH waves incident is also shown in

— .—.— Fig. 3 and this network is combined with the transmis-
IP,(0) (abZ,, + cdZ,J (jZ,, tan K.2H) sion line representation for a bulk SH wave to obtain

Cos KP2H the bisected transverse equivalent networks for Love-
.—- (41) type modes of even and odd symmetry, as shown in

Cos KS2H
Fig. 12, where the characteristic impedance Z.~ and

is a real quantity. wavenumber Kah of an SH wave are defined in Table I.
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(b)
Fig. 12. Bisected transverse equivalent network for Love-type

modes of (a) even and (b) odd symmetry in structure of Fig. 2.

1) Dispersion Relations: For the equivalent net-

works of Fig. 12, the transverse resonance condition

(6) reduces to the simple expression

2+2=0 (49)
e

where Z are the input impedances seen looking in

opposite directions at any pair of terminals in the net-

work. In the present situation, it is convenient to

choose the terminals at the reference plane z = —H in

1972

(50)

(51)

Substituting (50) and (51) into (49), one obtains the

dispersion relation for Love-type modes:

~ ~k,z’ – kzz
P1

{}

— tan (odd)
= j~k,lz — kz2 cot dk.zz – k.z2 H

(even)”
(52)

Since the solutions sought are those which are trans-

verse] y propagating in the layer but decaying into the

substrate, it is necessary that k,z> k.> k,l or, alter-

natively, C.2 < VP< C’,1. In particular, it is necessary that

v’k,,’– kxz = –jdk~z– k,,2 in order to represent a de-

cay into the substrates. Consequently, (52) may be

rewritten in real form as:

~ ~kxz – k,,’
/J2

{}

— cot (odd)
= ~k,,’ – k.’ ~k.z’ – k.’ H

(even)”
(53)

tan

One notes that the dispersion relation for even Love-

type modes in the structure with layer thickness 2H

is identical to that for an actual Love wave on a single

substrate covered with a layer of thickness H. An in-

spection of the modal fields to be presented below will

also show an identity between these two cases.

Upon identifying the elastic stiffness p with the in-

verse of electromagnetic permeability, a one-to-one

correspondence is also found to exist between the Love-

type modes of (53) and the electromagnetic H-mode

surface waves of a dielectric slab of thickness 2H,

where the air region outside the dielectric corresponds

to the substrates in the acoustic case. The horizontally

polarized electric field Eu in the electromagnetic case

corresponds to the particle velocity VV in the acoustic

case. Similarly, Hc corresponds to TU~ and H. to Tg~.

A numerical solution of (53) for the phase and group

velocities is shown in Figs. 13 and 14. The lowest mode

is an even mode and propagates down to zero frequency,

whereas the lowest odd mode has a finite cutoff fre-

quency.

2) The Modal Fields: Since the Love-type modes are

made up of bulk SH wave constituents only, the repre-

sentations (3) and (4) take the form

G = ~,h(z)g.~(~, y) (54)

~ = ~sh(z) %h(% y) (55)
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Fig. 14. Dispersion characteristics of odd Love-type modes
in gold layer between fused quartz substrates.

where V.h(z) and r$fi (z) are the voltage and current on

the appropriate transverse equivalent network of Fig.

12, and the bulk wave mode functions g,h and q,fi are

given in Table 1. The solutions for the voltage and cur-

rent are trivial for the simple networks of Fig. 12 and,

combining these with the mode function expressions,

one obtains the following modal fields for the Love-

type waves. For the fields of the even modes, one has:

V.h,(o)
I@ = — COS K8h2z~ikzx

4 P2P2

(56)

T.uz = jv,hz(()) ~~ sin K,h2ze–jk” (57)
s

where the subscripts 1 and 2 distinguish between sub-

strate and layer, respectively.

Similarly, for the odd-mode fields,

k.,
VU2 = ‘jI,hZ(()) ‘– sin Ksh2Ze–ik”’

Kah2

T.U2 = — I,hz(()) d= CW3 K8h2Ze–ik’z

one has:

k,~
Vul = —~I,hz(()) —– Sin K,h2HC1K8h11 ‘l”l–H)f?-ik”’

Ksh2

Tzul = – I~h2(()) ~p%pz cos K8h2Ht3-l KShll ‘[’1 ‘rf)e–ik’z.

(60)

(61)

(62)

(63)

In view of the simplicity of these Love-type solutions,

figures for their transverse dependence [11. ] are omitted.

II 1. CONCLUSION

The use of a solid layer between twc) substrates is

proposed as a means of coupling Rayleigh wave energy

from one substrate to the other, especially when piezo-

electricity is absent from one or both of the substrates,

in which case air-gap coupling cannot be used. To aid

in the understanding and design of such a solid-layer

coupler, the characteristic modes of the layered region

have been investigated in detail for the case of two

identical substrates, and a coupling Iengtlh which yields

optimum transfer of energy from one substrate to the

other is computed for a layer of typical thickness.

APPENDIX

CONDITION FOR OPTIMUM POWER TRANSFER

BETWEEN Two IDENTICAL SOI.IDS

Let a Rayleigh wave of unit amplitude, propagating

on the lower substrate, be incident on the IIayered region,

as shown in Fig. 1 (b). Such a Rayleighl wave on the

lower substrate may be regarded as a superposition of

two separate pairs of Rayleigh waves. In the first pair,

identical Rayleigh waves are incident on the upper and

lower substrates, while in the second pair, the Rayleigh

wave on the upper substrate is phase-reversed with

respect to that on the lower substrate. Mathematically,

this superposition may be represented by the following

equation:

(Al)

where the upper and lower elements in the column vec-

tors represent the amplitudes of the Rayleigh waves on

the upper and lower substrates, respectively. The (1, 1)

excitation is of even symmetry with respect to the mid-

plane of the structure while the ( – 1, 1) excitation is

odd. These excitations therefore excite the even and odd

modes of the layered region, respectively. Let the

amplitude of the lowest of each such mc)de, due to the

excitation given in (A. 1), be So and S., where the sub-

scripts e and o denote even and odd. Assuming the de-

sign to be such that all higher modes are evanescent,

only the above two modes propagate tc) the ‘toutput”

end of the layer, where their amplitudes become
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S,e-~’~eL and Soe-ihz.L, L being the length of the

layer. If S. and So are the elements of an appropriately

normalized scattering matrix, then the reciprocity of

the structure implies that the scattering matrix is sym-

metrical, so that Se is also the appropriate scattering

coefficient from the even mode of the layer to the even

distribution of Rayleigh waves on the substrates be-

yond the layer, and similarly for So. As a result, the

Rayleigh wave fields beyond the “output” of the layer

are represented by the vector

1
! S~2e–jk=eL

()
~ + ~ S02e-~kz”L

–1

2 () 1

= ! se2e–jk.eL
1

[()

so, –1
~ + ~; e–j(kz.–kz.)L

2 ( )11
. (A.2)

e

If the “aperture” field at the cross section containing

the beginning of the layer is approximated by the field

of the incident Rayleigh wave, the scattering coefficients

S. and S. must then be real quantities because these

coefficients are essentially the projection of the real

aperture (Rayleigh wave) field on the modes of the layer,

which are likewise real in their transverse field distri-

bution. In practice, bulk waves are generated at the in-

put and output junctions and these will contribute to

the aperture field, but their effect is probably small.

Within the above approximation, therefore, the

optimum transfer of energy from the lower to upper

substrates is seen from (A.2) to occur when

(kzo – kJL = n-.

The ratio of energy on the upper and lower substrates

is then given by:

P. \ 1 + so’/se’/’
x= [ l-so’/se’[’ “

Complete transfer of energy can occur only if SO= S.,

but this will not in general be the case. Nevertheless,

the asymmetry of a single Rayleigh wave propagating

on one substrate is such that neither of the layer modes

is preferentially excited to any significant degree, so

that one would expect So and S. to be of comparable

magnitude.
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Short Papers

Stripline Triplexer for Use in Narrow-

Bandwidth Multichannel Filters

RALPH KIHL~N

Atnfracf—Design techniques and equivalent circuits are pre-

sented for constructing a.printed-circuit narrow-bandwidth comple-

mentary triplexer filter. The techniques and circuits described allow

the construction of contiguous-band multichannel filters using

printed circuits with no shorted stubs.

A unit was designed and constructed to give a three-percent rela-

tive bandwidth for each separate channel. The agreement between

theory and experiment was in the range of measurement accuracy.
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The author is with the Division of Network Theory, Chalmers University of

Technology, Gothenburg 5, Sweden.

INTRODUCTION

The design of a multichannel filter requires a network that will

separate a given frequency band into N channels with minimum in-

sertion loss and low VSWR at the input port. One way of solving

this problem is to use cascaded-channel-separating units [1 ]- [3 ],

i.e., diplexers, with constant input-port impedances. The advantage

of this design is discussed by Matthaei and Cristal [1]. For each

channel to be separated, one diplexer is needed. In order tc reduce

the number of separating units, the author has constructed a tri-

plexer: a unit that separates out two contiguous channels. The total

number of elements in a triplexer is the same as in two corresponding

diplexers. However, the required space for a triplexer is less than

that of two diplexers. The triplexer is a complementary or pseudo-

complementary filter unit with constant input-port impedance and

it can therefore be cascaded, as the diplexer, to obtain a multichannel

filter system of various sizes without any interaction between the

filter channels.


